IJSRD CALL FOR PAPER : DATA MINING

Dear Researchers/Authors,

IJSRD is promoting a new field of this Digital Generation-“Data Mining”.

In accordance to it IJSRD is inviting research Papers from you on subject of Data Mining. This is under special Issue Publication by IJSRD. In addition to this authors will have a chance to win the Best Paper Award under this category.

To submit your research paper on Data Mining Click here

What is Data Mining..?

Data mining (the analysis step of the “Knowledge Discovery in Databases” process. The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use.
The actual data mining task is the automatic or semi-automatic analysis of large quantities of data to extract previously unknown, interesting patterns such as groups of data records, unusual records and dependencies.The Knowledge Discovery in Databases (KDD) process is commonly defined with the stages:
(1) Selection
(2) Pre-processing
(3) Transformation
(4) Data Mining
(5) Interpretation/Evaluation.
To know more…….

Data mining involves six common classes of tasks:

Anomaly detection (Outlier/change/deviation detection) – The identification of unusual data records, that might be interesting or data errors that require further investigation.
Association rule learning (Dependency modelling) – Searches for relationships between variables. For example, a supermarket might gather data on customer purchasing habits. Using association rule learning, the supermarket can determine which products are frequently bought together and use this information for marketing purposes. This is sometimes referred to as market basket analysis.
Clustering – is the task of discovering groups and structures in the data that are in some way or another “similar”, without using known structures in the data.
Classification – is the task of generalizing known structure to apply to new data. For example, an e-mail program might attempt to classify an e-mail as “legitimate” or as “spam”.
Regression – attempts to find a function which models the data with the least error.
Summarization – providing a more compact representation of the data set, including visualization and report generation.

Application Areas….

GAMES

            They are used to store human strategies into databases and based on that new tactics are designed by Computer ( in association with Machine Learning, Artificial Intelligence)

BUSINESS

            Businesses employing data mining may see a return on investment. In situations where a large number of models need to be maintained, some businesses turn to more automated data mining methodologies.In business, data mining is the analysis of historical business activities, stored as static data in data warehouse databases. The goal is to reveal hidden patterns and trends. Data mining software uses advanced pattern recognition algorithms to sift through large amounts of data to assist in discovering previously unknown strategic business information. Examples of what businesses use data mining for include performing market analysis to identify new product bundles, finding the root cause of manufacturing problems, to prevent customer attrition and acquire new customers, cross-selling to existing customers, and profiling customers with more accuracy.

SCIENCE AND ENGINEERING

            In recent years, data mining has been used widely in the areas of science and engineering, such as bioinformatics, genetics, medicine, education and electrical power engineering.

HUMAN RIGHTS

            Data mining of government records – especially records of the justice system (i.e., courts, prisons) – empowers the revelation of systemic human rights infringement in association with era and publication of invalid or deceitful lawful records by different government organizations

MEDICAL DATA MINING

            Some machine learning algorithms can be applied in medical field as second-opinion diagnostic tools and as tools for the knowledge extraction phase in the process of knowledge discovery in databases.

SPATIAL DATA MINING

            Spatial data mining is the application of data mining methods to spatial data. The end objective of spatial data mining is to find patterns in data with respect to geography. So far, data mining and Geographic Information Systems (GIS) have existed as two separate technologies, each with its own methods, traditions, and approaches to visualization and data analysis. Data mining offers great potential benefits for GIS-based applied decision-making.

TEMPORAL DATA MINING

            Data may contain attributes generated and recorded at different times. In this case finding meaningful relationships in the data may require considering the temporal order of the attributes.

SENSOR DATA MINING

            By measuring the spatial correlation between data sampled by different sensors, a wide class of specialized algorithms can be developed to develop more efficient spatial data mining algorithms.

VISUAL DATA MINING

            During the time spent transforming from analogical into computerized, vast datasets have been created, gathered, and stored finding measurable patterns, trends and information which is covered up in real data, with a specific end goal to manufacture prescient formations(patterns).
Advertisements

Fuel cell vehicles

FCV-icon1

Zero-emission cars that run on hydrogen

Fuel cell” vehicles have been long promised, as they potentially offer several major advantages over electric and hydrocarbon-powered vehicles. However, the technology has only now begun to reach the stage where automotive companies are planning to launch them for consumers. Initial prices are likely to be in the range of $70,000, but should come down significantly as volumes increase within the next couple of years.

Unlike batteries, which must be charged from an external source, fuel cells generate electricity directly, using fuels such as hydrogen or natural gas. In practice, fuel cells and batteries are combined, with the fuel cell generating electricity and the batteries storing this energy until demanded by the motors that drive the vehicle. Fuel cell vehicles are therefore hybrids, and will likely also deploy regenerative braking – a key capability for maximizing efficiency and range.

Unlike battery-powered electric vehicles, fuel cell vehicles behave as any conventionally fuelled vehicle. With a long cruising range – up to 650 km per tank (the fuel is usually compressed hydrogen gas) – a hydrogen fuel refill only takes about three minutes. Hydrogen is clean-burning, producing only water vapour as waste, so fuel cell vehicles burning hydrogen will be zero-emission, an important factor given the need to reduce air pollution.

There are a number of ways to produce hydrogen without generating carbon emissions. Most obviously, renewable sources of electricity from wind and solar sources can be used to electrolyse water – though the overall energy efficiency of this process is likely to be quite low. Hydrogen can also be split from water in high-temperature nuclear reactors or generated from fossil fuels such as coal or natural gas, with the resulting CO2 captured and sequestered rather than released into the atmosphere.

As well as the production of cheap hydrogen on a large scale, a significant challenge is the lack of a hydrogen distribution infrastructure that would be needed to parallel and eventually replace petrol and diesel filling stations. Long distance transport of hydrogen, even in a compressed state, is not considered economically feasible today. However, innovative hydrogen storage techniques, such as organic liquid carriers that do not require high-pressure storage, will soon lower the cost of long-distance transport and ease the risks associated with gas storage and inadvertent release.

Mass-market fuel cell vehicles are an attractive prospect, because they will offer the range and fuelling convenience of today’s diesel and petrol-powered vehicles while providing the benefits of sustainability in personal transportation. Achieving these benefits will, however, require the reliable and economical production of hydrogen from entirely low-carbon sources, and its distribution to a growing fleet of vehicles (expected to number in the many millions within a decade).

https://goo.gl/jjQJud

http://goo.gl/MZQ8PV

https://goo.gl/8zLptT

http://www.ijsrd.com/Sp_SubmitManuscript

http://www.ijsrd.com/SubmitManuscript